Про числа Фибоначчи, Леонардо Пизанский

Разные новости, происходящие в мире.

Модератор: nightAngel

Про числа Фибоначчи, Леонардо Пизанский

Сообщение nightAngel » Пт май 26, 2006 3:30 pm

Итальянский купец Леонардо из Пизы(1180-1240), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.

В век Фибоначчи возрoждение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих II, император(с 1220 года) Священной Римской империи. Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства.

Cтоль любимые его дедом рыцарские турниры Фридрих II совсем не признавал. Вместо этого он культивировал гораздно менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.

На таких турнирах и заблистал талант Леонардо Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.

Покровительство Фридриха и стимулировало выпуск научных трактатов Фибоначчи:

Kнига абака (Liber Abaci), написанная в 1202 году, но дошедшая до нас во втором своем варианте, который относится к 1228 г.
Практики геометрии"( 1220г.)
Kнига квадратов(1225г.)
По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта( XVII в.).

Как указано в документах 1240 года, восхищенные граждане Пизы говорили, что он был "рассудительный и эрудированный человек", а не так давно Жозеф Гиз (Joseph Gies), главный редактор Британской Энциклопедии заявил, что будущие ученые во все времена "будут отдавать свой долг Леонардо Пизанскому, как одному из величайших интеллектуальных первопроходцев мира". Его работы после долгих лет только сейчас переводятся с латинского языка на английский. Для тех, кто интересуется - книга, названная Ленардо Пизанский и новая математика Средних веков Жозефа и Франца Гиз (Joseph and Frances Gies) является прекрасным трактатом по веку Фибоначчи и его работам.

Хотя он и был величайшим математиком средних веков, единственные памятники Фибоначчи - это статуя напротив Пизанской башни через реку Арно и две улицы, которые носят его имя, одна - в Пизе, а другая - во Флоренции. Кажется странным, что так мало посетителей к 179-ти футовой Падающей башне когда-либо слышали о Фибоначчи или видели его статую. Фибоначчи был современником Бонанна (Bonanna), архитектора Пизанской башни, строительство которой тот начал в 1174 году. Оба они сделали вклад в мировую историю, но один, чей вклад намного превосходит другого, почти неизвестен.

Последовательность Фибоначчи, числа Фибоначчи
Наибольший интерес представляет для нас сочинение "Kнига абака" ("Liber Abaci"). Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими (арабскими) цифрами.

В "Liber Abaci" Фибоначчи приводит свою последовательность чисел как решение математической задачи - нахождение формулы размножения кроликов. Числовая последовательность такова: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 (далее до бесконечности).

На стр. 123- 124 данной рукописи, Фибоначчи поместил следующую задачу: "Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рождают кролики со второго месяца после своего рождения."

Последовательность Фибоначчи имеет весьма любопытные особенности, не последняя из которых - почти постоянная взаимосвязь между числами.

Сумма любых двух соседних чисел равна следующему числу в последовательности. Например: 3 + 5 = 8; 5 + 8 = 13 и т.д.
Отношение любого числа последовательности к следующему приближается к 0,618 (после первых четырех чисел). Например: 1: 1 = 1; 1: 2 = 0,5; 2: 3 = 0,67; 3: 5 = 0,6; 5: 8 = 0,625; 8: 13 = 0,615; 13: 21 = 0,619 и т.д. Обратите внимание, как значение соотношений колеблется вокруг величины 0,618, причем размах флуктуаций постепенно сужается; а также на величины: 1,00; 0,5; 0,67.
Отношение любого числа к предыдущему приблизительно равно 1,618 (величина обратная 0,618). Например: 13: 8 = 1,625; 21: 13 = 1,615; 34: 21 = 1,619. Чем выше числа, тем более они приближаются к величине 0,618 и 1,618.
Отношение любого числа к следующему за ним через одно приближается к 0,382, а к предшествующему через одно - 2,618. Например: 13: 34 = 0,382; 34: 13 = 2,615.
Последовательность Фибоначчи содержит и другие любопытные соотношения, или коэффициент, но те, которые мы только что привели - самые важные и известные. Как мы уже подчеркивали выше, на самом деле Фибоначчи не является первооткрывателем своей последовательности. Дело в том, что коэффициент 1,618 или 0,618 был известен еще древнегреческим и древнеегипетским математикам, которые называли его "золотым коэффициентом" или "золотым сечением". Его следы мы находим в музыке, изобразительном искусстве, архитектуре и биологии. Греки использовали принцип "золотого сечения" при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Свойства "золотого коэффициента" были хорошо известны Пифагору, Платону и Леонардо да Винчи.

Пропорции чисел Фибоначчи дают ориентиры не только возможных уровней отката, но и указывают возможную величину хода в случае продолжения тенденции. Если после хода рынок откатывается, а затем продолжает ход в том же направлении, то в типичном случае величина продолженного хода может составить 1.618.
nightAngel
Site Admin
 
Сообщения: 7806
Зарегистрирован: Пн июл 11, 2005 2:28 pm

Вернуться в С миру по-немногу

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3